HoloViews#
Open this notebook in Jupyterlite | Download this notebook from GitHub (right-click to download).
import panel as pn
pn.extension('plotly')
The HoloViews
pane renders HoloViews plots with one of the plotting backends supported by HoloViews. It supports the regular HoloViews widgets for exploring the key dimensions of a HoloMap
or DynamicMap
, but is more flexible than the native HoloViews widgets since it also allows customizing widget types and their position relative to the plot.
Parameters:#
For details on other options for customizing the component see the layout and styling how-to guides.
backend
(str): Any of the supported HoloViews backends (‘bokeh’, ‘matplotlib’, or ‘plotly’)center
(boolean, default=False): Whether to center the plotlinked_axes
(boolean, default=True): Whether to link axes across plots in a panel layoutobject
(object): The HoloViews object being displayedwidget_location
(str): Where to lay out the widget relative to the plotwidget_layout
(ListPanel type): The object to lay the widgets out in, one ofRow
,Column
orWidgetBox
widget_type
(str): Whether to generate individual widgets for each dimension, or to use a global linear scrubber with dimensions concatenated.widgets
(dict): A mapping from dimension name to a widget class, instance, or dictionary of overrides to modify the default widgets.
Display#
default_layout
(pn.layout.Panel, default=Row): Layout to wrap the plot and widgets in
The panel
function will automatically convert any HoloViews
object into a displayable panel, while keeping all of its interactive features:
import numpy as np
import holoviews as hv
box = hv.BoxWhisker((np.random.randint(0, 10, 100), np.random.randn(100)), 'Group').sort()
hv_layout = pn.panel(box)
hv_layout
By setting the pane’s object
the plot can be updated like all other pane objects:
hv_layout.object = hv.Violin(box).opts(violin_color='Group', cmap='Category20')
Widgets#
HoloViews natively renders plots with widgets if a HoloMap or DynamicMap declares any key dimensions. Unlike Panel’s interact
functionality, this approach efficiently updates just the data inside a plot instead of replacing it entirely. Calling pn.panel
on the DynamicMap will return a Row
layout (configurable via the default_layout
option), which is equivalent to calling pn.pane.HoloViews(dmap).layout
:
import pandas as pd
import hvplot.pandas
import holoviews.plotting.bokeh
def sine(frequency=1.0, amplitude=1.0, function='sin'):
xs = np.arange(200)/200*20.0
ys = amplitude*getattr(np, function)(frequency*xs)
return pd.DataFrame(dict(y=ys), index=xs).hvplot()
dmap = hv.DynamicMap(sine, kdims=['frequency', 'amplitude', 'function']).redim.range(
frequency=(0.1, 10), amplitude=(1, 10)).redim.values(function=['sin', 'cos', 'tan'])
hv_panel = pn.panel(dmap)
print(hv_panel)
Row [0] HoloViews(DynamicMap) [1] WidgetBox(align=('end', 'start')) [0] FloatSlider(end=10, margin=(20, 20, 5, 20), name='frequency', start=0.1, value=0.1, width=250) [1] IntSlider(end=10, margin=(0, 20, 5, 20), name='amplitude', start=1, value=1, width=250) [2] Select(margin=(5, 20, 20, 20), name='function', options=['sin', 'cos', 'tan'], value='sin', width=250)
We can see the widgets generated for each of the dimensions and arrange them any way we like, e.g. by unpacking them into a Row
:
widgets = hv_panel[1]
pn.Column(
pn.Row(*widgets),
hv_panel[0])
However, more conveniently the HoloViews pane offers options to lay out the plot and widgets in a number of preconfigured arrangements using the center
and widget_location
parameters.
pn.panel(dmap, center=True, widget_location='right_bottom')
The widget_location
parameter accepts all of the following options:
['left', 'bottom', 'right', 'top', 'top_left', 'top_right', 'bottom_left',
'bottom_right', 'left_top', 'left_bottom', 'right_top', 'right_bottom']
Customizing widgets#
As we saw above, the HoloViews pane will automatically try to generate appropriate widgets for the type of data, usually defaulting to DiscreteSlider
and Select
widgets. This behavior can be modified by providing a dictionary of widgets
by dimension name. The values of this dictionary can override the default widget in one of three ways:
Supplying a
Widget
instanceSupplying a compatible
Widget
typeSupplying a dictionary of
Widget
parameter overrides
Widget
instances will be used as they are supplied and are expected to provide values matching compatible with the values defined on HoloMap/DynamicMap. Similarly if a Widget
type is supplied it should be discrete if the parameter space defines a discrete set of values. If the defined parameter space is continuous, on the other hand, it may supply any valid value.
In the example below the ‘amplitude’ dimension is overridden with an explicit Widget
instance, the ‘function’ dimension is overridden with a RadioButtonGroup letting us toggle between the different functions, and lastly the ‘value’ parameter on the ‘frequency’ widget is overridden to change the initial value:
hv_panel = pn.pane.HoloViews(dmap, widgets={
'amplitude': pn.widgets.LiteralInput(value=1., type=(float, int)),
'function': pn.widgets.RadioButtonGroup,
'frequency': {'value': 5}
}).layout
Switching backends#
The HoloViews
pane will default to the Bokeh backend if no backend has been loaded, but you can override the backend as needed.
import holoviews.plotting.mpl
import holoviews.plotting.plotly
hv_pane = pn.pane.HoloViews(dmap, backend='matplotlib')
hv_pane
Please note that in a server context you will also have to set the matplotlib backend like below
import matplotlib
matplotlib.use('agg')
The backend
, like all other parameters, can be modified after the fact. To demonstrate, we can set up a select widget to toggle between backends for the above plot:
backend_select = pn.widgets.RadioButtonGroup(name='Backend Selector:', options=['bokeh', 'matplotlib', 'plotly'])
backend_select.link(hv_pane[0], value='backend')
backend_select
Open this notebook in Jupyterlite | Download this notebook from GitHub (right-click to download).